
Performance Analysis of Parallel
Programming Tools

Md Firoj Ali, Rafiqul Zaman Khan

Department of Computer Science
Aligarh Muslim University

Aligarh-202002, India.

Abstract__Numerous parallel programming tools have been
developed so far for supporting parallel programs. This
paper presents performance analysis of wide range of
parallel programming simulation tools. This paper also
compares the features of different tools. PVM and MPI
are most widely used standards for parallel and
distributed computing. MPI has better performance in
high performance massively parallel processing (MMPs)
computer systems to provide highly optimized and
efficient implementations than PVM. In MMP, all of the
processing elements are connected together to be one very
large computer. This is in contrast to the distributed
computing where massive numbers of separate computers,
connected through a network, are used to solve a single
large problem. PVM is most suitable in heterogeneous
networks to gain optimal performance. One may favor the
other tools depending on the need. With the help of our
performance comparison one can choose which one would
be the better for a particular application.
Keywords__Heterogeneous computing, virtual machine,
massively parallel processor.

I. INTRODUCTION
Computational power is always a thrust area from the
early days of computer systems. Of course technology
has gained its considerable progress in processing
power, data storage capacity, circuit integration scale
etc. in last several few years but still it becomes
unsatisfactory for some scientific computations for
today’s applications. So the development of high speed
computers becomes one of the driving forces for that.
Since many applications now a days need huge
computational power, there must be a solution with low
cost and high desirable performance. A costly approach
for this solution is supercomputer which may be out of
budget for many institutions or organizations. So
parallel computing came into existence and is a very
successful way of increasing desirable computation
speed. A collection of workstations can be the
computational equivalent of a super computer. The
computer networks become the ideal platforms for the
parallel computing recently and this type of
computations is known as network or heterogeneous
computing [18].
Distributed heterogeneous computing may be defined as
a particular form of parallel computing in which each
computing task is processed on the most appropriate
computing framework available. A large task consists
several numbers of small manageable tasks which can
be concurrently executed on the most suitable
framework to increase the efficiency. The degree of

parallelism depends upon the parallel computer
architecture.
Network computing interconnects different
heterogeneous systems into a single unified computing
resource [2, 3, 5]. The network which is designed for
the high computation should have communication
potential that equivalent to the logical computational
model of the application [3, 25]. The network designed
for the purpose of high computing performance should
involve the following criteria:
a) scalable cumulative power [3, 18],
b) decreased inter-process communications,
c) pre-requisition for multiple logical communication

channels with guaranteed bandwidths,
d) support for flexible application-dependent virtual

topologies [3, 25, 26, 27],
e) support of easy partition,
f) effective system management.
The knowledge in internal architecture and the
components of the distributed system is required for the
parallel programming tools [14].The communication
and synchronization among the various users is the
most important issue for the parallel computing
environments. The communication tools implement one
of the two communication techniques: message passing
or shared memory. Message passing interface (MPI)
and parallel virtual machine (PVM) are the most
popular examples of the message passing tools [22]. So
many parallel computing environments are available to
support parallel execution of programs on computer
networks. But which environment will be the best one?
The straight forward answer of this question is very
difficult. To determine which environment will be the
best depends one so many factors like the domain of
application, particular algorithm at hand, programmer’s
proficiency as well as personal interests, ease of use,
fluency and efficiency. The runtime-efficiency is only a
single important factor which determines which
environment would be the best one in general [19].
However, efficient utilization of the computational
potential of computer networks is still an open problem
and a research challenge for the future.
The advantages of parallel computing system are that it
ensures the processing power of widely available
various types of computer systems connected through
networks because these networks are at leisure or
partially idle most of the time. These are beautiful
resource of efficient free processing power.

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2924

Different frameworks have different advantages as well
as shortcomings. It is unrealistic that a framework that
would be unanimously employed for any parallel
distributed computing applications. The environments
are developed depending upon the requirements to
solve the problem at current hand. But PVM becomes
the de-facto environment for this purpose.
Rest of this paper is organized as follows. Section 2
includes the classification of simulation tools. Section 3
and 4 enumerate the different simulation tools for
parallel and distributed computing and their
comparisons. Section 5 and section 6 describes MPI and
PVM respectively and their comparison in section 7.

II. CLASSIFICATION OF SIMULATION TOOLS

The simulation tools for parallel and distributed systems
have been classified.(Fig 1) These tools very recently
developed and most of them still are under research.

III. TOOLS FOR SIMULATION OF PARALLEL

AND DISTRIBUTED SYSTEMS
This section provides an overview of some of the many
available tools that simulate parallel and distributed
systems. Table 1 and Table 2 both describe the different
simulation tools for parallel and distributed computing
systems.

Simulation Tools

Industrial
Processes

Parallel and
Distributed system

Environmental
Resources

So many
applications

Simulation Model Design Model

Discrete event Continuous event Hybrid Library-basedVisual-based

..….

Fig.1 Shows Different Simulation Tools

TABLE I: AN OVERVIEW OF SOME THE MANY AVAILABLE TOOLS THAT SIMULATE PARALLEL AND

DISTRIBUTED SYSTEMS

S.
N

Tool Description
Language
supported

Domain of
simulation

Type of Simulation
Library
- Based

Visual-
Based

1
Dimema
s

It is a performance analysis tool for message
passing programs. It provides to develop and
tune parallel applications by affording accurate
prediction of performance on target machine
architecture.
http://www.cepba.upc.es/dimemas/

C

Analyses the
performance of
parallel
programs

Yes
Yes
(using
Paraver)

2 SvPablo

It is a performance analysis tool that captures
and analyses data from serial and parallel
programs. It rapidly identifies and resolves the
performance bottlenecks.
http://www.pablo.cs.uiuc.edu/Software/Pablo/pa
blo.html

C, ForTran9,
ForTran9,
HPF

Analyses the
performance of
parallel
programs

Yes Yes

3 Clue

It is able to simulate the performance of parallel
programs using the message passing library
PVM for communication.
http://www.math.tuwien.ac.at/~aurora/group5/n
ode27.html

C, JAVA etc.

Performance
evaluation of
message
passing
programs that
are developed
based on PVM.

Yes No

4
Ptolemy
2

It is a Java-based library to design and simulate
heterogeneous concurrent systems.
http://ptolemy.eecs.berkeley.edu/ptolemyII/

JAVA

Simulates the
behaviour of
concurrent
heterogeneous
components.

Yes Yes

5 MPISim

It predicts the performance of MPI programs
based on architectural characteristics such as
number of processors and message
communication delays.
http://pcl.cs.ucla.edu/projects/mpisim/

C

Analyses the
performance of
parallel
programs

Yes No

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2925

TABLE II: A COMPARISON OF SOME THE MANY AVAILABLE SIMULATION TOOLS FOR PARALLEL AND
DISTRIBUTED SYSTEMS

S.
N

Tool Description Application Area Efficiency Limitation

1

PACE
(Performance
Analysis and
Characterization
Environment)

Performance evaluation techniques
for computing systems include:
measurement, analytical modeling
(that is mathematical modeling), and
simulation.

The performance
prediction of
distributed systems

Moderate
Lack of structural
information of the
system

2
RSIM (Rice
Simulator for ILP
Multiprocessors)

RSIM is the ability to simulate
processors that use instruction-level
parallelism (ILP). ILP processors are
capable of executing multiple
instructions in parallel

simulator of cache-
coherent non-uniform
memory access
(CCNUMA) shared-
memory machines

Poor

It is not suitable
for evaluation of
various designs of
real-world
programs

3

PEVPM(Performa
nce Evaluating
Virtual Parallel
Machine)

The basic idea behind PEVPM is to
use statistical distributions to model
the performance of the message
passing operations, such as send and
receive

performance modeling
system for message
passing programs

Moderate

it is not possible to
use it for shared
memory programs,
or mixed message
passing and shared
memory programs

4

POEMS(Performa
nce Oriented End-
to-end Modeling
System)

POEMS proposed a methodology for
the evaluation of system model using
multiple evaluation tools. The model
of system is composed of component
models

to develop an
environment for
performance modeling
of parallel computing
systems e

Difficult
to predict

hard to estimate
the efficiency

5

POSE (Parallel
Object-oriented
Simulation
Environment)

POSE is used for simulation of the
performance behavior of programs
that are executed on large-scale
machines such as IBM Blue Gene

a parallel discrete
event simulator

Poor
not possible on a
single processor
machine

6

PMaC
(Performance
Modeling and
Characterization)

PMaC approach involves the
determination of the machine profile
and the program signature. A
machine profile comprises the
information on how fast the machine
can perform basic operations A
program signature comprises the
information on the quantity and the
type of basic program operations

framework for
performance
prediction of message
passing programs

Moderate

this technique may
not be suitable for
modeling
computer
programs

7
PAL (Performance
and Architecture
Laboratory)

 The PAL approach expresses the
execution time of a program on a
machine as a parameterized
mathematical model

performance modeling
and prediction of
distributed computing
systems

Moderate

may not be
suitable for the
model-based
performance
evaluation of
various program
designs

IV. MPI

MPI is a common message passing library approach in
which a process calls the library for the purpose of
exchanging messages with another processes. MPI is a
standardized interface for inter-process communication.
The reason behind the design of MPI was that every
Massively Parallel Processor (MPP) merchant was
developing their own specific message-passing API.
This is why a portable parallel application could not be
written. To remove this serious problem all the vendors
of MPP come to a single platform and MPI is the
outcome of that. So each MPP vendor accept MPI as
the standard message-passing API and as a result MPI
becomes faster than PVM on MPP hosts as each vendor
focuses to increase the performance of MPI [10].
The early versions of MPI provided only message
passing primitives, MPI comes in a form of software
library (e.g., MPICH), so the programmer can use calls
to library functions to perform process management or
data exchange between processes. Implementations of

MPI exist for popular programming languages (e.g.,
Fortran, C, C++, and Java) on a variety of platforms
including networks of workstations. The MPI interface
is meant to provide essential virtual topology,
synchronization, and communication functionality
between a set of processes (that have been mapped to
nodes/servers/computer instances) in a language-
independent way, with language-specific syntax
(bindings), plus a few language-specific features. The
earlier version MPI-1 has the salient features like:
1) a huge numbers of point-to-point communication

primitives
2) a huge numbers of collective communication

routines among group of processors
3) a communication context that supports the design

of safe parallel software libraries
4) ability to adjust with communication topologies
5) ability to generate derived data types which depict

messages of non-contiguous data.

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2926

But application programs in MPI-1 were not portable
across the network as there was no standard way to start
MPI tasks on different nodes. So different MPI
implementations used different methods. In MPI-2
version the standard process creation and start-up
functions are included. The following communications
functions are included in MPI-2:
1) non-blocking collective communication functions
2) language binding for C++
3) MPI_SPAWN functions to start both MPI and non-

MPI processes
4) one-sided communication functions as put and get
MPI-2 is a richer source of communication functions
than PVM having a total of 248 functions while MPI-1
has 128 functions only [10].

V. PVM
Parallel Virtual Machine (PVM) [8] and Message
Passing Interface (MPI) [6] are the most familiar
examples of the message passing systems. PVM is
particularly effective for heterogeneous applications
that exploit specific strengths of individual machines on
a network. The individual computers may be shared- or
local-memory multiprocessors, vector supercomputers,
specialized graphics engines, or scalar workstations that
may be interconnected by a variety of networks, such as
Ethernet, FDDI, etc. PVM is an integrated software
tools and libraries that is mainly designed towards
networks of workstations. The central notion to the
design of PVM is virtual machine concept. Virtual
machine is defined as the collection of heterogeneous
computers connected by a network which appears to a
user as a single large computation system [10]. So using
the combined speed and storage of many computers, the
large computational problem can be solved with more
cost effectively. The PVM system has been used for
applications such as molecular dynamics simulations,
superconductivity studies, distributed fractal
computations, matrix algorithms, and in the classroom
as the basis for teaching concurrent computing.The
PVM system consists of two parts. The first part is a
daemon which is known as pvmd3 and simply known
as pvmd. Pvmd exists in all the computers making up
virtual machine. Any user can install pvmd on a
machine using a valid login [24]. A user willing to
utilize PVM, first make an arrangement for a virtual
machine by specifying a host-pool list. The daemons
are started on each machine and co-operate to imitate a
virtual machine. A machine to be member of virtual
machines, it must run its own daemon. The PVM
application can then be started from a command line
prompt on any of these machines [16, 24]. Multiple
users can build up overlapping virtual machines and
each user can run several PVM applications on
simultaneous basis. The PVM applications co-ordinate
with the daemons via sockets and / or pipes [9]. Thus
applications can be signed up into PVM and then can be
monitored by it although they were not started by it [9].
Applications are free to join or leave a virtual machine
at any number of times allowing them to belong several
virtual machines.

Input and
partitioning

Computer 1
Computer 2

Output

SMPD

SPMD

Inter-component communication & synchronization
Inter-instance communication & synchronization

Fig. 2 PVM Computational Model

PVM supports dynamic process management while in
other systems the processes are statistically defined
[24]. Dynamic process groups are layered above the
core PVM routines. A process can live to multiple
groups, and groups can change dynamically at any time
during a computation. Routines are provided for tasks
to join and leave a named group. Group members are
uniquely numbered from zero to the number of group
members minus one. If gaps appear in this numbering
due to tasks leaving the group, PVM attempts to fill
these gaps with subsequently joining tasks. Tasks can
also query for information about other group members.
Functions that logically deal with groups of tasks such
as broadcast and barrier use the users explicitly defined
group names as arguments [24].
The second part of the system is a library of PVM
interface routines [16, 24].This library holds the
functionally complete user callable routine for message
passing, spawning process, co-coordinating tasks and
modifying virtual machines. Application programs for
the execution must be linked to these libraries like other
programming languages. Moreover, PVM programs
written for different architectures can communicate to
each other, thus allowing for building of heterogeneous
network computing systems.
The PVM software contains a collection of protocol
algorithms to implement reliable and sequenced data
transfer, distributed consensus and mutual exclusion.
These algorithms make the system robust by
introducing error detection mechanisms and failure
notification to applications. PVM uses both UDP and
TCP sockets. UDP sockets are set up between a pair of
daemons and between a daemon and a local task. The
daemon-daemon socket is used for carrying data and
inter-daemon control. When a user starts a daemon, the
daemon sets up a single TCP socket with each daemon
in virtual machine. These TCP carry standard-out and
standard-error messages back to the user [21]. PVM
requires a three-step procedure for a task to send (or
receive) a message. For sending a message, a send
buffer has first to be initiated, then the data is packed
into the buffer, and finally the data in the buffer is sent.

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2927

Later versions e.g. (PVM 3.3) provide the option to
send data using a single call [20].

Cluster 3

MPP

Vector SC

Bridge/
Router

Cluster 2

Cluster 1

Cluster 4

Uniform
View of
Multi-programmed
Virtual Machine

Fig. 3 PVM Architectural View

As the PVM becomes a de-facto software across the
globe, it becomes mandatory to keep the PVM API
backward compatible so that all existing PVM
applications would continue to run as it is with newer
versions.

VI. COMPARISONS BETWEEN PVM AND MPI
Now we discuss the major differences between PVM
and MPI in the following sections.
A. Portability
Portability refers to the ability of the same source code
which is to be copied, compiled and executed on
different platforms without modifications. MPI is
portable but PVM is highly portable [10, 12]. MPI is
portable in the sense that MPI applications as a whole
run on any single architecture and it does not able to co-
operate among the different processes, running on
different architectures. PVM group has done excellent
work to facilitate implementations across a wide range
of architectures encompassing most UNIX systems and
Windows [10, 12, 23].
B. Heterogeneity
Heterogeneity refers to portability to virtual parallel
machines which are obviously of different architectures.
Both specifications support heterogeneity. But MPI
does not mandate of that [10, 11] though it depends on
the type implementations. This has a great advantage in
the sense that nobody from any other vendor is allowed
to use the machines of a vendor which otherwise may
slowdown the systems of later one. PVM has specific
functions for the support to heterogeneity. LAM [4],
CHimP [1], and MPICH [13] are implementations of
MPI that can run on heterogeneous networks of
workstations [12].
C. Interoperability
Interoperability refers to the ability of different
implementations of the same specification to exchange
messages [12]. Since MPI does not mandate
heterogeneity, there is no question of interoperability.
PVM application programs can run across any set of
different architectures and the processes can co-operate

to exchange the information without any problem. PVM
programs are more flexible in this sense. A separate
effort (not part of the MPI Forum) has developed an
“interoperability standard” called IMPI that provides
sufficient standardization for some implementations
details so that implementations conforming to this
standard can exchange messages. IMPI is now available
[7] and several vendor implementations exist [12].
Due to the lack of interoperability MPI always need to
check the destination of every message whether the
message is for the same host or for the other hosts. If it
is for other host, the message must be converted into a
format that is compatible for the other MPI version
[10]. Furthermore MPI implementation uses native
communication functions provided by architecture
directly while PVM implementation use native
communication functions during the local
communication or to another host with identical
architecture. But PVM uses standard communication
functions for heterogeneous communications.
 MPI and PVM also differ in language operability. In
case of PVM, a program written in FORTRAN can send
a message which can be received by a program written
in C and vice-versa. But in MPI, a program written in
FORTRAN does not feel to communicate with a
program written in C in spite of executing on the same
architecture. These two languages have two different
interfaces and hence MPI does not compel two
languages to interoperate [10].
D. Virtual Machine
Virtual machine is defined as the dynamic collection of
heterogeneous distributed computers such as different
workstations, personal computers and massively
parallel computers etc, connected by a network which
appears to a user as a single large computing machine
[9, 10]. Virtual machine concept has brought a
revolutionary change in parallel distributed computing.
PVM is totally fabricated around the virtual machine
concept. Virtual machine concept is the most
fundamental feature of PVM [10]. This feature is the
foundation for providing the facilities like portability,
heterogeneity, interoperability and encapsulation of
functions. On the other hand, MPI imposes attention
towards message-passing and resource management and
the virtual machine concept does not exist in it.
F. Topology
A topology is an extra, optional attribute that one can
give to an intra-communicator; topologies cannot be
added to inter-communicators. A topology can provide
a convenient naming mechanism for the processes of a
group (within a communicator), and additionally, may
assist the runtime system in mapping the processes onto
hardware. Although MPI does not support virtual
machine concept, it supports a higher level abstraction
on top of the computing resources in terms of massage
passing topology. The MPI group of tasks can be
arranged in a specific logical interconnection topology.
Tasks then communicate to each other within that
topology. The underlying physical network topology
supports with a considerable speed for message passing
[10].

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2928

G. Dynamic Process Group
Sometimes we want to perform global operations like
broadcasting a message only to a subset of all the
processes. MPI allows us to define a subset of these
processes in run time using MPI library calls. Processes
in this group is numbered from 0 to n-1 where n is the
number of a processor in a group [9]. Each process ID
in a group is known as rank. User processes in MPI can
create new processes at runtime.
E. Contexts
A context is a system defined tag. Every message has
its own tag which can be used to distinguish messages
from one another. So messages of different groups
never mixed when we create multiple groups with
overlapping processes. Both PVM and MPI supports
context in different ways. In PVM, any task can send a
request to any other tasks without considering the
willingness of the receiving tasks. But in MPI, a task
can send a message to specific tasks which are
interested to receive that message due to the presence of
separate message contexts for each task [9]. PVM 3.4
has a concept of base context. In PVM all spawned
tasks inherits their parent context. But if parent of any
task dies, the child tasks inherit base context [10].
H. Communicators
The notions of group of processes and context are
combined in a single object called a communicator [10].
Most communications are specified in terms of rank of
the process in the group identified with the given
communicator. Communicator variables are associated
with the newly created groups in order to refer that
group later as per the requirement. All communications
takes place within a communicator. This has a great
advantage in the sense that it provides high level of
protection against irrelevant messages [9].
Communicator is the most essential part of MPI. PVM
3.4 would have been included communicators.
I. Process control
Process control refers to the ability to begin and end
processes, for finding out which processes are running,
and where they are possibly running [10, 16]. PVM
functions provide the ability to
1) join or leave the virtual machines,
2) kill a process
3) send a signal to a process
4) check whether a process is running
5) notify a arbitrary process if another leaves from

PM system.

PVM has some basic functions which are required to
know how many processes can be started on the
available computing resource. In the other hand MPI-1
has no defined functions that can start a parallel
application. But MPI-2 is incorporated with some
functions that can start a group of tasks and to send a
kill signal to group of tasks [15].
J. Resource Management
PVM that is inherently dynamic in nature, can add or
remove computing resources at will either from system
console or even from within the user's applications.
PVM Permits applications to interact with and

manipulates the computing environment to provide a
powerful paradigm for load balancing, task migration
and fault tolerance. Virtual machine provides a
framework that determines which tasks are responding
and supports naming services so that independently
spawned tasks can identify each other and cooperate
[10, 16].
Another aspect of virtual machine dynamics relates to
efficiency. Computational needs of user applications
can change at the time of their program execution. So, a
message-passing infrastructure should have a flexible
control over the amount of computational power being
exploited. For example, consider a typical application,
which begins and ends with basically serial
computations, but includes several phases of heavy
parallel computation. A large Massively Parallel
Processor (MPP) system need not be washed out as part
of the virtual machine for the serial portions, and can be
added just for those portions when it is of most value.
Likewise, consider a long-running application in which
the user occasionally wishes to attach a graphical front-
end to view the computation's progress. Without virtual
machine dynamics, the graphical workstation would
have to be allocated during the entire computation [10].
MPI does not relate to the dynamics and it is designed
to be static in nature to improve performance.
Virtual machine in PVM is responsible for
encapsulating and organizing resources for parallel
programs. The parallel programmer does not need to
manually select every host where tasks are to be
executed and then log into each machine in turn to
actually spawn the tasks and monitor their execution,
the virtual machine provides a simple abstraction to
cover the distinct machines. Further, this resource
abstraction is carefully layered to allow varying degrees
of control. The arbitrary collection of machines then
can be treated by the users as uniform computational
nodes, in spite of their architectural disparity.
Alternatively, the users are free to request for the
execution of particular tasks on intended machines with
particular data formats, architectures, or even on an
explicitly named machine by traversing the increasing
levels of detail [16].
Any abstraction for computing resources is not
supported by the MPI standards and allows each MPI
implementation or user to customize their personal
choice of management schemes. This approach of
personal choice is good but creates overheads [10].
K. Fault Tolerance
Fault tolerance is the most important and most critical
issue in large scientific computing applications.
Without fault tolerance some long running applications
can not be completed ever. When a process is registered
to virtual machine or it leaves the virtual machine or the
status of the virtual machine changes, it must be
notified to the virtual machine. A task can post a notify
for any of the tasks from which it expect to receive a
message. In this context, the receiving task will get a
notify message if any task fails or expires. So getting
the notice of related tasks, system can reside in a safe

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2929

state. A huge loss may happen if a critical task fails just
before the completion of an application at last.
In a similar fashion, if a node like an I/O server, critical
to an application, fails, the application tasks can post
notifies for that node. The tasks will then be informed
that the server is replaced with a new one in the virtual
machine. When a host exits from a virtual machine by
notification to the application tasks, the application
tasks adjust with the remaining available resources so
that the tasks do not hang.
PVM provides more support for fault tolerance and
recovery by exposing to the programmer some of the
properties of sockets. MPI does less, in the interest of
greater portability. Fault tolerance in MPI is an
important research topic. MPI-1 does not include any
fault tolerance scheme while MPI-2 includes a little of
that.
L. Global Name Spaces
A database (name spaces) is created for storing the
names of the processes, messages or services with the
object of identifying each by its name. Processes can
register or unregistered to or from the name space
dynamically. Advantage is that processes can be
identified independently from the underlying process
management and communication environment. The
dynamic nature of PVM builds name service extremely
useful and convenient. MPI-1 has no functionality that
does require name services [10].

VII. SUMMERY
The comparison between PVM and MPI is formulated
in the table below.

TABLE III: COMPARISON BETWEEN PVM AND
MPI
S.N. Parameters MPI-1 MPI-2 PVM

1 Portability Support Yes Yes Yes

2 Heterogeneity Support Not Not Yes

3
Interoperability
Support

Not Not Yes

4
Virtual Machine
Support

Not Not Yes

5 Topology Support Yes Yes Not

6
Dynamic Process
Group Support

Good Good Yes

7
Process Control
Support

Not
Defined

Yes Fully

8
Resource Management
Support

Not Not Yes

9 Name Spaces Not Yes Yes

VIII. CONCLUSION

There are so many parallel computing tools existing so
far. But problem arises that which one would be the
best tool that would be unanimously accepted by every
researchers. Unfortunately, there is no such universal
tool, but with the help of our above performance
comparison one can choose which one would be the
better for a particular application.
 If an application is going to be executed on a single
MPP, MPI would be the most suitable option. In this
case, the system performance is highly increased. MPI
is very rich by the communication functions so it

becomes very useful for the application that exploits
special communication modes which is absent in PVM.
The absence of interoperability and fault tolerance in
MPI enhances the communication performance.
If an application is going to be executed in
heterogeneous platform, PVM is the most suitable
option. Since the PVM is built around the virtual
machine concept, the applications can be executed over
a collection of platforms of different hosts. PVM
contains the functions like dynamic process
management, resource management and fault tolerance
and interoperability which are key attributes for
heterogeneous computing. The ability to write long
running PVM applications that can continue even when
hosts or tasks fail, or loads change dynamically due to
outside influence, is quite important to heterogeneous
distributed computing.
Programmers should assess the functional requirements
and running environment of their applications and
choose the API that is most suitable accordingly.

IX. FUTURE WORK
MPI does not notify any fault description. When error
occurs, MPI simply exits from the program. So
notification of faults is an impetus area of future
research.
Both MPI and PVM have their distinctive features. If it
is possible to get a programming tool which includes
the good features of the both APIs, the programmers
will enjoy more freedom for developing portable
programs. Further the system will utilize only MPI in
intra-cluster communication and PVM in inter-cluster
communication.

References
[1] Alasdair R., Bruce A., Mills J. G., and Smith A. G. CHIMP/MPI

user guide. Technical Report EPCC-KTPCHIMP- V2-USER
1.2, Edinburgh Parallel Computing Centre, June 1994.

[2] Beguelin A., Dongarra J., Giest G. A., Mancheck R and
Sunderam V, “Heterogeneous Network Computing”, In Sixth
Siam Conference on Parallel Processing, Siam, 1993.

[3] Bhattacharya S., David H.C and Pavan A., “A Network
Architecture for Distributed High Performance Heterogeneous
Computing ”. IEEE, 1994, 110-115.

[4] Burns G., Daoud R., and Vaigl J. LAM: An open cluster
environment for MPI. In J. W. Ross, editor, Proceedings of
Supercomputing Symposium ’94, pages 379–386. University of
Toronto, 1994.

[5] Casas J., Konuru R., Otto S. W., Prouty R. and Walpole
J.,”Adaptive Load Migration Systems for PVM”, IEEE, 1994.

[6] Clark D. et al. “Strategic Directions in Networks and
Telecommunications”, ACM Computing Surveys, Vol. 28, No.
4, December 1996.

[7] Committee I. S.. IMPI - interoperable message-passing
interface, 1998. http://impi.nist.gov/IMPI/.

[8] Dongarra J. et al. “An introduction to the MPI standard”.
Technical Report CS-95-274, University of Tennessee, January
1995.

[9] Fagg G. E and Dongarra J. J., "PVMPI: An integration of the
PVM and MPI systems", Calculateurs Paralleles, 2, 1996.

[10] Geist G. A., Kohl J. A., and Papadopoulos P. M., "PVM and
MPI: A Comparison of Features”, May 30, 1996. Available:
http://www.ece.rutgers.edu/~parashar/ classes/98
99/ece566/slides/pvmvsmpi.pdf.

[11] Gropp W. and Lusk E. “PVM and MPI Are Completely
Different”. CiteSeerX

beta , 1997.

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2930

[12] Gropp W. and Lusk E. “Goals guiding design : PVM and MPI”.
Conference: Cluster 2002, IEEE International Conference on
Cluster Computing, Chicago, IL (US), July, 2002.

[13] Gropp W., Lusk E., Doss N., and Skjellum A.. A high
performance, portable implementation of the MPI Message-
Passing Interface standard. Parallel Computing, 22(6):789– 828,
1996.

[14] Hariri S., Topcuoglu H., Furmanski W., Kim D., Ra I., Bing X.,
Ye B., Valente J. “A Problem Solving Environment for Network
Computing”. IEEE, 1997.

[15] Hempel R., Walker D. W.”The emergence of the MPI message
passing standard for parallel computing”. Computer Standards
& Interfaces 21, 51–62, 1999.

[16] Hussain j. s. and ahmed g. “a comparative study and analysis of
PVM and MPI for parallel and distributed systems”. IEEE,
2005.

[17] Kaliher C. “Cooperative processes software (CPS)”, AIP Conf.
Proc.August volume 209, pp 364-371, 1990.

[18] Khoussainov R., Patel A., Voorde H. D. J. T. “Distributed
Parallel Computing in Networks of Workstations - A Survey
Study”. CiteSeerX

beta .
[19] Mattson T. G. “Programming Environments for Parallel

Computing: A Comparison of CPS”, LINDA, p4, PVM,,
POSYBL and TCGMSG. IEEE, Jan, 1994.

[20] PVM 3.3 User’s guide and reference manual, Oak Ridge
National Lab., Oak Ridge, Tennessee.

[21] Qureshi K. and Rashid H. “A Performance Evaluation of RPC,
Java RMI, MPI and PVM”. Malaysian Journal of Computer
Science, Vol. 18 No. 2, December 2005, pp. 38-44.

[22] Rafiqul Zaman Khan, A. Q. Ansari and Kalim Qureshi
“Performance Prediction for Parallel Scientific Application”,
Malaysian Journal of Computer Science, Vol. 17 No. 1, June
2004, pp 65-73.

[23] Scott S. L., Fischer M., and Geist A. “PVM on windows and NT
clusters”. In Alexandrov V.and Dongarra J., editors, recent
advances in Parallel Virtual Machine and MessagePassing
Interface, volume 1497 of Lecture Notes in Computer Science,
pages 231–238. Springer, 1998.

[24] Sunderam V. S. “PVM: a parallel framework for parallel
distributed computing”. 1990.

[25] Vetter R. and Du D., “Distributed Computing in an Environment
Based on High Speed Optical Networks”, IEEE Computer, Feb.,
1993.

[26] Vetter R., William K. and Du D.,”Topological Design of
Optically Switched WDM Networks”, Proc. 16th Conf. on Local
Computer Networks, 1991.

[27] William K. and Du D., “Time and Wavelength Division
Multiplexed Architectures for Optical Passive Star Networks”,
Univ. of Minnesota Tech. Report (TR 91-44), Sep 1991.

Md Firoj Ali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2924-2931

2931

